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A spherical cavity is used to consider optimizing a replacement equivalenc e 
criterion, which enables one to minimize the systematic error in such a 
radiometer. 

A cavity radiometer employing electrical substitution is commonly employed as a standard 
or substandard means of measuring thermal and laser radiation fluxes [i]. This imposes 
stringent requirements on the accuracy, which is governed particularly by the systematic 
error arising from the nonequivalent temperature patterns in the detector due to the radiation 
flux and the replacement electrical power. 

Studies have been made on that error [2, 3] for a spherical cavity whose heating was 
recorded with a single thermocouple and with convective-radiative heat transfer, or in [4] 
for radiative heat transfer for a cavity in a vacuum chamber. The basic systematic error 
can be minimized by the best choice of the thermocouple coordinate, which can be based on 
preliminary information on the aperture angle for the input radiation, the relative distri- 
bution of the cavity wall illumination E(x), and the mode of radiation flux scattering within 
the receiving element. 

If such information is lacking or very inaccurate, it is better to use a set of thermo- 
couples which enable one to integrate the temperature pattern of the outer surface no matter 
what the radiation flux distribution. The thermocouples are usually connected in series 
as a thermobattery in a spherical or other type of cavity radiometer, and equality of the 
readings on irradiation and on replacement is taken as a criterion for equivalence in the 
electrical replacement procedure. 

With a spherical shell and a temperature pattern symmetrical about the axis, the thermo- 
couples may be located in a plane passing through the symmetry axis on the outer surface 
of the detecting element at points whose coordinates e k correspond to Ax k = const, where 
x = cos0, k = I, 2, ..., N. That thermocouple positioning provides equal areas for the 
annular zones AS k on the surface per thermocouple. With Ax k = const, we have that 

A S ~  = 2 ~ R  ~ (cos  6h - -  cos  Oh+~) = 2~R2Axh = c o n s t ,  

in which Ax k = x k -XK+i, where x I = i, since the polar angle e in the spherical system 
is here reckoned from the ray passing from the center of the sphere through the point lying 
opposite the center in the entrance aperture. 

It is shown below that only with that thermocouple disposition can equality in the 
thermobattery readings be considered as a correct criterion for replacement equivalence 
(for convective-radiative heat transfer closely similar to linear). That is the basis for 
choosing this design. 

However, in general, the detector positioning and the reading processing may have sub- 
stantial effects on the basis systematic error, so a thermobattery used with arithmetic 
summation, which imposes constraints on the disposition, cannot be considered as the only 
arrangement and particularly not the optimal one of realizing the replacement in the sense 
of minimizing that error. 

It is not a rational procedure to reduce the error by increasing the total number N 
of thermocouples because this increases various errors, the main one of which is the error 
caused by the lack of equivalence between the conductive heat transfer in the thermobattery 
block on irradiation as opposed to substitution, together with the error arising in measure- 
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ments in air from the unstable local heat fluxes around the thermocouples. Also, increasing 
N complicates the design and raises the probability of differences in thermal resistance 
between the couples, which also reduces the accuracy. 

Similar problems arise for other cavity shapes, so reducing the basic systematic error 
without increasing the total number of couples is a common problem. 

For a spherical cavity with a small hole (d 2 ~ 4R 2) and convective-radiative transfer 
in a thermostatically controlled air or liquid medium, the conditions may allow linearization 
in accordance with Newton's law, and then the power dissipated by the outer surface of the 
receiving element in the steady state is 

1 

P = 2=Rza f [T (R, x) -- To] dx, ( I )  
--1 

in which the effective heat-transfer coefficient ~ may include convective and radiative 
components [2]. 

For radiative heat transfer in a vacuum chamber having temperature To, correspondingly 

1 

P = 2aR2e=a ,[ [T ~ (R, x) --  T~I dx. (2) 
--1 

We transfer in (i) to numerical integration by the rectangle method with nodes uniform- 
ly arranged along x and use the fact that the heater provides almost uniform heating for 
the detecting element in replacement mode to get on equating the heat-transfer power levels 
on irradiation and substitution that 

in which 

N 

E VI (P~, xk) = NV~ (P2), (3) 
h = l  

V1 (P1, xh) = ~ [T~ (P1, R, xh) - -  To]; V2 = ~ [T~ (P2, R) - -  To]. (4) 

Then (3) cor responds  to equa l  r ead ings  from the  t he rmoba t t e ry  c o n s i s t i n g  of  N thermo- 
couples in series, from which one gets equivalence between the radiative and electrical 
power levels. As N is always limited, the radiation power PI and the replacement power 
P2 meeting (3) for given N and O k = arc cos x k may differ considerably, which is the reason 
for the systematic error defined by 

~o-- P1--P~ --1 P2 (5) 
P2 P1 

With linear heat transfer, the relative temperature distribution over the outer surface 
in a multilayer spherical shell is [5] 

in which 

U l ( 1 , x ) =  TI(P1, R, x) = 1  + P1 elP1 m~ lcm 
To 4a~RToBi -~ 4a~,~ToR (x), 

(6) 

(2m + 1) 2 R~,FmPm (x) 
Cm (x) = L,n (m -5 1)(m + Bi) - -  Nmm (m + 1 - -  Bi) ~01D2m+l ; 

1 

e (x) P~ (x) dx 
F m  - -  Xo �9 

E (x) dx 
Xo 

R01 = RI/R; Bi = ~R/~ s is the Blot number, and L m and N m are coefficients dependent on the 
number of layers and the thicknesses and thermal conductivities, which have been given for 
a two-layer model in [3], and for a three-layer one in [5], while for a single-layer one 

L m = N m = i, x 0 = cos00. 
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The relative temperature of the outer surface with uniform heating by the substitution 

power P2 is [5] 

T~(P2, R) P~ 
O~(1) = -- 1 +  

To 4aR~sToBi (7 )  

We substitute for T=(P 2, R) from (3) into (7) and determine P2 from (7) and substitute 
into (5) to get 

x 4~RTo)~ Bi ~v 
~0i  ---- 1 + I N - -  ~ U 1(1, xh) - (8 )  

NP1 ~= 1 

We then substitute UI(I, x) for x = x k from (6) into (8) to get finally 

N ~ s C.,(&). (9 )  
h = l  r n = l  

The s u b s c r i p t  1 in  ~01 x e m p h a s i z e s  t h a t  (9 )  i s  a p p l i c a b l e  o n l y  in  t h e  l i n e a r  h e a t - t r a n s f e r  
a p p r o x i m a t i o n ,  w h i l e  t h e  s u p e r s c r i p t  x i n d i c a t e s  t h a t  t h e  t h e r m o c o u p l e s  a r e  u n i f o r m l y  d i s -  
t r i b u t e d  in  x ,  i . e . ,  5x k = 2/N, x k = - 1 + k 2 /N.  With  any  o t h e r  t h e r m o c o u p l e  p o s i t i o n i n g ,  
e q u a l  r e a d i n g s  f rom t h e  t h e r m o b a t t e r y  in  t h e  two s t a t e s  c a n n o t  s e r v e  a s  c r i t e r i o n  f o r  e q u i v -  
a l e n c e  in  t h e  r e p l a c e m e n t  b e c a u s e  (3 )  c o r r e s p o n d s  t o  a p p r o x i m a t e  e q u a l i t y  in  t h e  h e a t  o u t -  
p u t s  o n l y  f o r  5x k = c o n s t .  I f ,  f o r  e x a m p l e ,  t h e  t h e r m o c o u p l e s  a r e  p l a c e d  w i t h  a u n i f o r m  
s t e p  in  8, i . e . ,  @k = m - k m/N, w h i l e  58 k = m/N, t h e  e q u a t i o n  becomes  

N N 

~.~ V~ (P~, 0h)sin 0,cA0 h = V~ ( P j  ~ sin 0hA0 h. (10) 
h = l  k ~ l  

As bO k is constant, we convert to the variable x to get 

N N 

VI (Px, xk) V I - -  x~ = V2(PJ ~ V 1 x 2 - ~ .  ( 1 1 )  
h ~ l  h ~ l  

Then t h e  s u b s t i t u t i o n  p r o c e d u r e  s h o u l d  be  b a s e d  on i m p l e m e n t i n g  (11)  i n s t e a d  o f  ( 3 ) ,  
while the basic systematic error ~018 is correspondingly 

o ~=1 ~=1 (12)  
[LI'o I = N 

h = .  1 

With r a d i a t i v e  ( n o n l i n e a r )  h e a t  t r a n s f e r ,  e q u a l  t h e r m o b a t t e r y  r e a d i n g s  e v e n  w i t h  hx k = 
c o n s t  do n o t  i m p l y  a c r i t e r i o n  f o r  e q u i v a l e n c e  in  t h e  r e p l a c e m e n t  b e c a u s e  t h e  power  p a s s i n g  
f rom t h e  s u r f a c e  o f  t h e  s p h e r e  t o  t h e  vacuum chamber  c a n n o t  be  e x p r e s s e d  in  t e r m s  o f  t h e  
sum of the emf readings in (4), which are linearly dependent on temperature. The corre- 
sponding criterion should be based on (2) and for Ax k = const is formulated as 

Vl (P1, Xk) -~ To = N -~ To �9 (13)  

The basic systematic error D02 x is then 

. 4aR%2~T~ N 
~02 ---- 1 

NPI k= l 

The subscript 2 in ~02 x indicates radiative heat transfer. 

It is not possible to write the D02 x in analytic form as in (9) because the correspond- 
ing nonlinear boundary-value problem can be solved only numerically [4]. However, one can 
substitute the numerical values for U~D(I, x) for x = x k into (14) from the solution derived 
in [4] to examine the dependence of ~02 x on N and @ k. 
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Fig. i. The N dependence of JP02J for radiative transfer, 
P02 in %. 

by 
If a thermobattery is used here, i.e., (3), there would be an error P02(tb) x, defined 

Calculations from (14) and (15) for a model whose parameters are given in [4] show 
that realizing (13) instead of (3) with p = I0 W, e 0 = i0 ~ and E(x) ~ const leads for exam- 
ple for N = 8 to almost a fivefold reduction in the basic systematic error. The relative 
advantage in the accuracy increases further with N. Figure 1 shows that p02(tb) x does not 
tend to zero as N increases, which clearly illustrates that it is incorrect to use a thermo- 
battery with radiative heat transfer. 

The equation analogous to (13) can be derived for radiative heat transfer with a uni- 
form 8 distribution for the couples, with the corresponding N dependence of p0= e Figure 
i shows this, with P02(z) e corresponding to the flux density being integrated approximately 
on irradiation and substitution, while p02(e) 6 corresponds to the integration in substitu- 
tion being performed exactly by analytic means on the basis of uniformity in the cavity 
heating. One needs to choose a mode of integration having the same order of accuracy for 
both states, since otherwise the error of measurement can be increased because the residual 
terms in the quadrature formulas are not equivalent. 

All the P02 in Fig. i are given in modulus, although ~2 and P028 differ in sign for a given 
aperture angle. This is done to give a compact figure and also for convenience in comparing 
the absolute values. 

The calculations confirm that the thermocouple disposition and the data processing 
substantially affect the main error associated with electrical replacement. One has to 
choose the couple positions and the quadrature formula for the numerical integration to 
minimize that error. If one lacks adequate information on the absorbed radiation distribution 
at the inner wall, one can use only general evaluations for the accuracy of the quadrature 
formulas. 

Numerical-analysis theory shows that the highest integration accuracy for a fixed number 
of nodes N is provided for a fairly smooth function by a Gauss quadrature formula [6, 7], 
which has the highest algebraic order of accuracy (with N nodes, it is accurate for poly- 
nomials of degree 2N - i). Here Ul(l, x) and U1p(l, x) are smooth functions, as is evident 
from the forms given in [4, 8] and from the fact that they are solutions to an elliptic 
equation with smooth boundary values for p = i [7]. 
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When a Gauss quadrature is used, the result for convective-radiative transfer is 

N 

AhV~ (P1, x~) : 2V2 (P2), (16) 

in which A k = 2(1 - Xk2) -I [PN'(Xk)] -2 are the weighting coefficients in the Gauss formula 
and x k are the roots of the Legendre polynomial PN(X). 

As A k and x k are uniquely determined by the number of nodes (thermocouples) N, the de- 
sign for a given N should provide for independent measurement of the readings of each couple. 

To realize (16) and the other equations, one can use a data-acquisition system such 
as the Aksamit, which has 48 input voltage channels (thermo-emf) and six analog output chan- 
nels, one of which can be used in automatic substitution control. 

The basic systematic error p01G in implementing (16) is 

o s x B i  N 
~01- 2 ~ A1~ ~ Cm(xtO. (17) 

h= 1 m~ 1 
For radiative transfer, the equivalence criterion with a Gauss formula is 

N ~Ah[Vl(Pl, Xi~) ]4 [V2(P2 ) ]4 
_~ [~ + T o  = 2  --+T0 . ( 1 8 )  

When (18) is realized, D0= G is 

N 

~o2Cr = 1 + 2~R2~eOT~p~ [2-- ~ AhU~p(1, xh)]. (19) 
h=i 

Figure 1 also shows the N dependence of P02 G corresponding to (19). A Gauss quadra- 
ture enables one to provide a basic systematic error less than 0.1% even with a narrow radia- 
tion beam (8 o = i0 ~ and with only 6-8 thermocouples. With the same N, D0=(a) e is larger 
by a factor 5-7 and ~02 x by almost an order of magnitude. 

A thermobattery with radiative transfer would increase ~02(Tb) x by a factor of 30-40 
by comparison with D02 G for the same N (Fig. i). 

Calculations from (17) for linear transfer show that using (16) instead of (3) or (ii) 
provides a substantial increase in the accuracy, particularly for small 80, i.e., for a 
laser beam or a highly collimated thermal radiation flux. To determine the number of couples 
needed to provide a given error K as a function of 8o, we used (9), (12), and (17) to deter- 
mine the minimum N providing [P01[ ~ K. Figure 2 shows the 8 o dependence of N for three 
values of K with the thermocouples uniformly spaced in x (Ax), and in e (Ae) or in accordance 
with the Gauss formula with a limiting power of 50 W for the given radiometer model. 

Implementing (16) by means of a data-acquisition system instead of the (3) thermobattery 
with 8 o = 10-30 ~ enables one to reduce the number of couples for a given K by a substantial 
factor. However, as e 0 increases, the advantages from the Gauss quadrature diminish, and 
they persist for 8 o = 100-120 ~ only for K < 0.05%, which shows that for large 8o, i.e., 
small tangential temperature gradients, the error in the numerical integration is largely 
independent of the integration method and a Gauss formula has advantages only at the level 
of the basic systematic error, which is comparable with the other errors in the substitution 
method. Therefore, for large 8o, a Gauss quadrature can be replaced by other numerical 
integration methods. 

However, for large 8o, a Gauss quadrature has the advantage that the A k are always posi- 
tive and normalized such that their sum is 2 in the range [-I, I]. Therefore, the additional 
integration error that could accumulate with sign-varying A k due to inaccuracy in measuring 
the temperature of each couple in the present case for any N will not exceed twice the maxi- 
mum error for one couple. Also, a Gauss quadrature leads to algorithms free from satura- 
tion, which is also important in a data-acquisition system. 

If there are no data on E(x), the N that guarantees a given K with a given mode of 
substitution may be derived from the same formulas for P01 and P02 by substituting for the 
temperature pattern in which E(x) is specified as a delta function, i.e., E(x)--~(l - x). 
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Fig .  2. The 80 dependence of N fo r  < = 0.5 (1) ,  0.1 (2 ) ,  0.05% 
(3) with the couples uniformly disposed in x (Ax) and in 0 (A0) 
and also in accordance with the Gauss formula g; 8 o in degrees. 

For UI(1, x) for example, replacing E(x) by a delta function is equivalent to Fm----I in (6), 
which corresponds to the largest tangential temperature gradients for the given cavity 
parameters, so the N found from this condition and IP0zl ~ K will certainly be sufficient 
for any other form of E(x). One should proceed similarly in calculating U1p(l, x) by the 
[4] method. 

This method of reducing the basic systematic error in substitution is applicable not 
only to a spherical cavity but also to other shapes, and this applies not only to replacing 
a thermobattery by a set of isolated thermocouples, whose readings are processed by an 
optimal numerical-integration algorithm, but also when one uses a Gauss quadrature, since 
smoothness in temperature patterns is a general feature in thermal conduction. With other 
forms of cavity, the integration range is naturally altered, but there is no mathematical 
difficulty [9] in converting A k and x k from the range [-i, i] to any interval [b, a]. 

This approach can be supplemented with other ways of minimizing the basic substitution 
error, one of which has been described in [i0]. 

Notation. R and R I outside and inside radii of sphere; d, input hole diameter; t(R, x) 
and T 0, temperatures of the outer surface of the sphere and environment; 6, thermocouple 
sensitivity; e I and e 2, blacknesses of the inner and outer surfaces of the detecting element; 
Is, thermal conductivity of the outer layer in the spherical shell; V I and V 2, emfs of thermo- 
couples on irradiation and substitution; 00, aperture angle of flux governing angular boun- 
dary of irradiation spot on cavity wall; p = r/R and 8, radial and polar coordinates in 
spherical system; o, Stefan's constant; Pn(x), Legendre polynomials of the first kind and 
order n. 
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TEMPERATURE MEASUREMENT IN A REDUCED-PRESSURE SUBSONIC OXYGEN JET 

E. B. Georg and M. I. Yakushin UDC 533.9. 082.5 

An induction plasmotron has been used to produce a stream of oxygen plasma, 
whose temperature distributions in the axial and radial directions have 
been measured at low pressure. 

There are very few papers on oxygen plasmas, mainly because of difficulties in making 
them, as oxygen is a gas representing an explosion hazard, and when it is used at reduced 
pressures, one needs a mechanical pump filled with vacuum oil. 

The first in which an oxygen plasma made in an induction discharge is mentioned goes 
back to 1961 [i]. All the measurements were made at atmospheric pressure in a plasma based 
on a mixture of argon with oxygen. 

So far as we are aware, no experimental study has been made on induction plasmotrons 
with the use of oxygen plasmas at low pressures, although the topic is clearly important 
on account of research in gas-phase kinetics, catalysis, nonequilibrium heat transfer, and 
high-temperature materials science. 

The present paper continues researches published in [2, 3] and relates to temperature 
measurements on free subsonic jets of air and nitrogen at reduced pressures produced with 
a VGU-2 induction plasmotron. 

The VGU-2 has been used with a discharge channel 6 cm in diameter under the following 
conditions: anode power inputs 31.6 and 34.5 kW, oxygen flow rates 2.9-3.06 g/sec, pressure 
range 8.103-104 Pa, and flow speed at the axis near the end of the channel 90-110 m/sec. 

The free jet was imaged on the slit of a DFS-452 spectrograph (dispersion 1.6 nm/mm) 
or that of a McPhersonmonochromator (dispersion 0.8 nm/mm) with photographic recording. 
The plasma parameters were measured along the axis and the radius near the end of the dis- 
charge channel. 

The spectra were recorded at 200-800 nm. In the UV range, the spectrum is radiated 
in the main by the Schumann-Runge 02 bands at 310-450 nm and the second negative system 
of 02 + at 260-310 nm, while in the visible and red regions, one gets the emission from atomic 
oxygen 0 I. Impurities were absent from the spectrum. 

The plasma jet had a uniform blue emission (02 ) with 31.6 kW anode input (mode I). 
At 34.5 kW (mode II), the jet structure altered: a narrow core with bright emission ap- 
peared and the peripheral part acquired a yellow-Breen color, the extent of the core varying 
with the pressure, oxygen flow rate, and energy disposition. The spectral pattern was that 
in I, the main source was provided by oxygen molecules, with very weak emission from atomic 
oxygen, mainly in the two lines at 777 and 616 nm. As the power increased, the molecular 
spectrum weakened, and very strong lines from atomic oxygen appeared (excitation potentials 
over 12 eV), with the intensity there also substantially dependent on the pressure for a 
given power. As the pressure was reduced from 104 to 8.103 Pa, the intensity increased, 
while the lines vanished at 2.104 Pa, and the molecular emission strengthened. 

A water-cooled copper holder containing the sensors or specimens was use~ in research 
on n0nequilibrium heat transfer in the jet, so it was necessary to establish how the holder 
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